
Beyond the PC:
Emulating Closed
Systems

EaaSI Training Module #8

1

● What is a “closed system”, and how does
it differ from an “open system”?

● What’s a “ROM” file?

● What factors limit the capabilities of open
source emulators?

During This Module

2

But first…what’s a “PC”, really? 3

https://www.youtube.com/watch?v=1rV-dbDMS18&feature=youtu.be&themeRefresh=1

A Little History:
Open Systems
● “PC” can refer broadly to personal

computers (of any brand, make, or
model)

● IBM also used this term in the early
1980s for its IBM Personal Computer
line

● IBM PC used an “open architecture”
that allowed other hardware
companies to release their own
models that were “IBM PC
compatible”

○ Meaning: they all used the same
Intel x86-compatible processors
and could usually use the same
peripherals and software 4

Building “the PC”
● The monster success of the IBM PC and its clones led the way for the varied

ecosystem of hardware manufacturers creating interoperable x86
computers, components, and peripherals that still make up the desktop “PC”
market today

● The fact that all these specific components share an open architecture
makes it relatively simple to create virtual equivalents in emulation

5

EMULATOR

Parallel History:
Closed Systems
● There have also been many closed computing systems created over

the years - machines that lock the user into a defined set of compatible
components and software

6

What makes a closed system?

● Proprietary firmware

○ Embedded, device-specific
software that makes it possible for
a particular piece of hardware to
boot an operating system

7

● Technical Protection Measures (TPM)

○ Digital locks preventing access to
OS, firmware, or other components

● Inaccessible specifications

○ Trade secrets that prevent
third-party integrations

One or more of:

What’s in a “ROM”?

● Commonly-used term for a file containing firmware

● Copied from un-editable Read-Only Memory either directly embedded
on a computer’s motherboard or on a storage device

● On closed systems, obtaining a ROM file may:
○ Involve breaking TPM
○ Run contrary to a purchase agreement or Terms of Service

8

For Example:
The Macintosh 68k-series emulator BasiliskII requires a ROM file containing firmware
from a real-world Macintosh in order to boot Mac OS. Here, the ROM file specified
(“064DC91D.rom”) was pulled from the motherboard of a Performa 580 9

EaaSI-ly Handling ROMs
● In the EaaSI platform, ROMs have to

be managed somewhat
independently from emulator
containers and Environments

● Have to balance:

○ Decision-making: EaaSI system
and service administrators need
the flexibility to make their own
risk-assessments regarding how
they manage and share
firmware/ROMs

○ Ease-of-use: The EaaSI platform
could make ROM use so easy
that users don't need to think
about them at all 10

Problem 1:
Copyright Chilling Effect

● In the U.S. , Fair Use principles and DMCA exemptions help protect the use of
emulators in preservation/heritage work

○ However, libraries/archives/museums are generally not leading or
funding emulator development

○ Emulator development is often driven by
individual/hobbyist/community projects that are more vulnerable to
takedowns for using proprietary firmware AND can be more difficult to
maintain at scale than similar projects led or funded by institutions

● Internationally, further investigation is needed to determine where and how
preservation organizations could share emulation resources with
pre-configured ROM files across jurisdictions

11

Problem 2:
Reverse-Engineering
● EaaS* aims to provide a framework with consistent, reliable features

on top of emulators that support both open and closed systems

● But the more closed a system is, the more developing an emulator
for it requires reverse-engineering, work-arounds, and guesswork

● The differences between recreating an open system and
reverse-engineering a closed one challenge the ability to build
consistent features for a framework like EaaS

12

* See Training Module #3 for discussion of the distinction between the EaaS framework and
the EaaSI platform:
https://www.softwarepreservationnetwork.org/eaasi-training-module-3-the-eaas-eaasi-stack/

https://www.softwarepreservationnetwork.org/eaasi-training-module-3-the-eaas-eaasi-stack/

Toward a Generic
Emulator Interface
● EaaSI currently uses custom, EaaS-specific “wrappers” to adapt the specific

controls and requirements (like ROMs) of specific emulators to the generic
preservation and access workflows offered by the framework (opening legacy
files/data, running old applications and operating systems, etc.)

● The adaptation work necessary to create these “wrappers” takes significant effort
and has kept EaaS development largely limited to the most common,
high-demand, well-documented systems (like PCs)

● EaaS, EaaSI, and the preservation community at large would benefit from a
consistent, abstract, non-EaaS-specific metadata schema to describe the
functionality and features of emulators* - whether they are emulating open or
closed systems

13*For more details and proposed implementation of such a schema, please read Rafael Gischke
and Klaus Rechert’s 2022 iPRES paper, “A Generic Emulator Interface for Digital Preservation”

https://osf.io/2eg6u

Standards (Redux)

● Computing history encompasses much more than PCs - it is full of wild,
varied, and unique systems (some open, some closed) with different needs
for emulation

● The heritage community can not retroactively standardize computing
systems or emulators, but we can standardize the way we describe and talk
about them

● Agreement on preservation metadata for emulators and software can’t be
tackled by EaaSI program alone

14

See Training Module #7 for related discussion of EaaSI’s efforts to implement metadata
standards:
https://www.softwarepreservationnetwork.org/eaasi-training-module-7-implementing-metadata
-standards/

https://www.softwarepreservationnetwork.org/eaasi-training-module-7-implementing-metadata-standards/
https://www.softwarepreservationnetwork.org/eaasi-training-module-7-implementing-metadata-standards/

Dreaming Big For
Emulator Development
● In the meantime, emulators themselves (not just platforms like EaaSI) could receive

support and development to better conform to existing preservation standards

● More and better features could be made with preservation and remote access systems
in mind rather than stand-alone desktop applications:

○ Broader compatibility with raw flux or forensic disk image formats

○ Exporting files or preservation metadata from emulated systems

○ Integration with common/open source repository management platforms

● Technical accuracy of emulators (particularly of closed systems) could be improved with
the backing and protection of public-good/heritage orgs

15

16

Together, we can make sure even non-PC systems and emulators are
still “EaaSI compatible”!

Credits

￮ Training Module written and designed by Ethan
Gates, Software Preservation Analyst, Yale University
Library

￮ Original photos, screenshots, and videos recorded by
Ethan Gates

￮ Image of Macintosh Performa 580CD courtesy of
National Library of New Zealand

￮ Icons sourced from The Noun Project

￮ EaaSI program of work sponsored by the Alfred P.
Sloan Foundation and the Mellon Foundation, hosted
by Yale University Library

17

https://commons.wikimedia.org/wiki/File:Macintosh_Performa_580CD_-_front.jpg
https://commons.wikimedia.org/wiki/File:Macintosh_Performa_580CD_-_front.jpg
https://thenounproject.com/

