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￮ What is the difference between 
emulation, virtualization, and 
containerization?

￮ Why does the difference matter for 
long-term digital preservation?

￮ How, why, and when does the EaaSI 
platform make use of each? 

During This Module
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But first...have you ever wished you had a fresh, new computer - even 
though your current one isn’t technically “broken”? 3



Maybe you want to...
￮ Run an application not 

compatible with your 
operating system

￮ Isolate a program from your 
other files

￮ Test how your 
application/script/file will 
behave on someone else’s 
computer

￮ Troubleshoot corrupt, 
buggy, or just unexpected 
software behavior

￮ Host multiple web sites from 
the same server

￮ Present a sparkling clean 
desktop when you have to 
screen-share in that video 
call later
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...but physical computers are 
heavy and expensive...

...and it’s not very efficient to have two (or more) machines around 
just to do one thing each! 5



￮ Emulation, virtualization, and containerization are all methods to make 
components of a physical machine abstract or virtual

￮ Helps make software compatible and portable across systems; or, can help you 
duplicate and isolate systems on a single real computer (“host”)

￮ Choosing a method depends on the level of compatibility and complexity of your 
target software (“guest”)

Emulate

Abstracting a Computer

Virtualize

Containerize
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Emulation
￮ The entire “guest” system is recreated by 

software - including hardware

￮ The “guest” is fundamentally incompatible 
with the “host” (without emulation)

￮ For example: a current PC can not run a 
Commodore 64 program without full 
emulation

￮ Handy for long-term access and 
backwards compatibility

Contemporary Examples of Emulation:

● Mini vMac (early Macintoshes)
● VICE (Commodore)
● Hatari (Atari)

Guest
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Virtualization
￮ The “guest” system makes at least some 

use of real “host” hardware

￮ The “guest” is fundamentally compatible 
with the “host”

￮ For example: an Intel iMac can run 
Windows 10, it just doesn’t come 
pre-installed

￮ Handy for efficiency, cross-compatibility

Contemporary Examples of Virtualization:

● Parallels Desktop
● VirtualBox
● VMWare

Guest
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Containerization
￮ A single application is packaged with only 

the bare minimum of operating system 
components necessary to run it

￮ Emulation and virtualization recreate entire 
“guest” systems; containers don’t even try

￮ Also fundamentally requires compatibility 
between the software in the container and 
“host” hardware

￮ Handy for isolating, distributing 
applications

Contemporary Examples of Containerization::

● Docker
● LXC
● Singularity
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EaaSI takes advantage of all three techniques - for different reasons! 10



EaaSI Emulation
￮ Environments require an emulator to recreate hardware

￮ No emulation, no Environments

￮ Indispensable to the platform and our program of work - that’s why it’s 
“Emulation-as-a-Service Infrastructure” :)
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ex. Commodore 64 Environment in EaaSI - virtualization is incompatible and not available 12



Commodore 64 Environment, running thanks to emulation 13



EaaSI Virtualization
￮ *Some* Environments can take advantage of virtualization

￮ Improves performance; the Environment will probably be more 
responsive, run programs more quickly

￮ But, only Environments running certain guest operating systems and 
software are compatible (must be KVM-compatible)

￮ EaaSI server must also be configured properly
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ex. Virtualization enabled on a compatible (Windows XP) EaaSI Environment 15



Windows XP + Adobe Reader 9.3 Environment boots and runs more quickly with 
virtualization than just emulation 16



EaaSI Containers
￮ The EaaSI stack itself is deployed and run via containers

￮ Keeps our strategy modular and flexible - quickly swap out our code 
when it requires updates

￮ Stays in line with widely-adopted tools

￮ EaaSI system administrators can scale up to their needs
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GitLab container registry for components that make up the EaaSI Client
(screenshot from summer 2020) 18



All Roads Lead to Emulation
￮ Virtualization will *always* eventually break - it’s inevitable

￮ Packaging up modern virtual machines as Environments will help to 
emulate them later

￮ Time - and software development cycles - are not on our side

19“Microsoft Lifecycle FAQ”, 2021-07-23:
https://docs.microsoft.com/en-us/lifecycle/faq/windows



Exit Strategy

￮ Currently using Docker but keep 
containers as platform-agnostic 
as possible

￮ Virtualization is a bonus; 
Environments can always fall 
back to full emulation
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