
Emulation,
Virtualization,
Containerization

EaaSI Training Module #4

1



￮ What is the difference between 
emulation, virtualization, and 
containerization?

￮ Why does the difference matter for 
long-term digital preservation?

￮ How, why, and when does the EaaSI 
platform make use of each? 

During This Module

2



But first...have you ever wished you had a fresh, new computer - even 
though your current one isn’t technically “broken”? 3



Maybe you want to...
￮ Run an application not 

compatible with your 
operating system

￮ Isolate a program from your 
other files

￮ Test how your 
application/script/file will 
behave on someone else’s 
computer

￮ Troubleshoot corrupt, 
buggy, or just unexpected 
software behavior

￮ Host multiple web sites from 
the same server

￮ Present a sparkling clean 
desktop when you have to 
screen-share in that video 
call later

4



...but physical computers are 
heavy and expensive...

...and it’s not very efficient to have two (or more) machines around 
just to do one thing each! 5



￮ Emulation, virtualization, and containerization are all methods to make 
components of a physical machine abstract or virtual

￮ Helps make software compatible and portable across systems; or, can help you 
duplicate and isolate systems on a single real computer (“host”)

￮ Choosing a method depends on the level of compatibility and complexity of your 
target software (“guest”)

Emulate

Abstracting a Computer

Virtualize

Containerize
6



Emulation
￮ The entire “guest” system is recreated by 

software - including hardware

￮ The “guest” is fundamentally incompatible 
with the “host” (without emulation)

￮ For example: a current PC can not run a 
Commodore 64 program without full 
emulation

￮ Handy for long-term access and 
backwards compatibility

Contemporary Examples of Emulation:

● Mini vMac (early Macintoshes)
● VICE (Commodore)
● Hatari (Atari)

Guest

7



Virtualization
￮ The “guest” system makes at least some 

use of real “host” hardware

￮ The “guest” is fundamentally compatible 
with the “host”

￮ For example: an Intel iMac can run 
Windows 10, it just doesn’t come 
pre-installed

￮ Handy for efficiency, cross-compatibility

Contemporary Examples of Virtualization:

● Parallels Desktop
● VirtualBox
● VMWare

Guest

8



Containerization
￮ A single application is packaged with only 

the bare minimum of operating system 
components necessary to run it

￮ Emulation and virtualization recreate entire 
“guest” systems; containers don’t even try

￮ Also fundamentally requires compatibility 
between the software in the container and 
“host” hardware

￮ Handy for isolating, distributing 
applications

Contemporary Examples of Containerization::

● Docker
● LXC
● Singularity

9



EaaSI takes advantage of all three techniques - for different reasons! 10



EaaSI Emulation
￮ Environments require an emulator to recreate hardware

￮ No emulation, no Environments

￮ Indispensable to the platform and our program of work - that’s why it’s 
“Emulation-as-a-Service Infrastructure” :)

11



ex. Commodore 64 Environment in EaaSI - virtualization is incompatible and not available 12



Commodore 64 Environment, running thanks to emulation 13



EaaSI Virtualization
￮ *Some* Environments can take advantage of virtualization

￮ Improves performance; the Environment will probably be more 
responsive, run programs more quickly

￮ But, only Environments running certain guest operating systems and 
software are compatible (must be KVM-compatible)

￮ EaaSI server must also be configured properly

14



ex. Virtualization enabled on a compatible (Windows XP) EaaSI Environment 15



Windows XP + Adobe Reader 9.3 Environment boots and runs more quickly with 
virtualization than just emulation 16



EaaSI Containers
￮ The EaaSI stack itself is deployed and run via containers

￮ Keeps our strategy modular and flexible - quickly swap out our code 
when it requires updates

￮ Stays in line with widely-adopted tools

￮ EaaSI system administrators can scale up to their needs

17



GitLab container registry for components that make up the EaaSI Client
(screenshot from summer 2020) 18



All Roads Lead to Emulation
￮ Virtualization will *always* eventually break - it’s inevitable

￮ Packaging up modern virtual machines as Environments will help to 
emulate them later

￮ Time - and software development cycles - are not on our side

19“Microsoft Lifecycle FAQ”, 2021-07-23:
https://docs.microsoft.com/en-us/lifecycle/faq/windows



Exit Strategy

￮ Currently using Docker but keep 
containers as platform-agnostic 
as possible

￮ Virtualization is a bonus; 
Environments can always fall 
back to full emulation

20



Credits
￮ Training Module written and designed by Ethan 

Gates, Software Preservation Analyst, Yale University 
Library

￮ All photos, screenshots, and videos recorded by 
Ethan Gates

￮ Icons sourced from The Noun Project

￮ EaaSI program of work sponsored by the Alfred P. 
Sloan Foundation and the Andrew W. Mellon 
Foundation, hosted by Yale University Library

21

https://thenounproject.com/

